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ABSTRACT

Rock masses usually include discontinuities in the form of fractures or joints, which in general are critical in determining the mechanical or 
flow properties of the rock mass at the engineering scale. Recent advances in computing power have made it possible to represent these 
fractures explicitly in a rock mass model. However, in practice, three-dimensional fracture systems are impossible to measure, and the best 
available alternative is either to map fractures in drill cores (one-dimensional) or on exposed rock surfaces (two-dimensional). The con-
struction of a three-dimensional fracture system that is representative of reality then becomes a very challenging inverse problem, as this 
is essentially a relationship of one reality corresponding to many possibilities. Most existing approaches start with assumptions about the 
distribution of measured features, perform a series of bias corrections and then use some further assumptions and stereological analysis 
to establish the three-dimensional fracture model. The usual practice is to focus on particular aspects (parameters) of the three-dimensional 
fracture model which can easily produce a biased representation of the real fracture system. In this paper, a non-parametric systematic opti-
misation framework is described which can help construct a more realistic three-dimensional fracture model that best matches the statistics 
of the fracture mapping data. No bias correction is necessary in this approach provided the sampling of the fracture model is consistent 
with that used in the data collection. The framework can also be used to assess the uncertainty of the fracture model, which is an important, 
but often neglected, component of modelling in existing approaches. In addition, this non-parametric approach is also flexible and can deal 
with data from different sources (e.g., different sampling planes at different orientations, mixtures of plane and borehole sampling). This is 
a significant advantage over existing approaches as different data sources often display different statistical characteristics even for the same 
fracture set. The Stripa Mine dataset is used to demonstrate the application of the proposed method.

Keywords: discrete fracture network modelling, fracture mapping data, systematic DFN model optimisation, Stripa Mine fracture model.

Modelado no paramétrico de fracturas tridimensionales a partir de mapas de fracturas

RESUMEN

Los macizos rocosos incluyen discontinuidades en forma de fracturas o juntas que, en general, resultan críticas en la determinación de las 
propiedades mecánicas o de flujo de la masa rocosa a escala ingenieril. Avances recientes en el poder de cálculo de los ordenadores ha 
hecho posible la representación explícita de estas fracturas en un modelo de macizo rocoso. Sin embargo, en la práctica, los sistemas de 
fracturas tridimensionales son imposibles de medir, y la mejor alternativa disponible es o medir las fracturas en sondeos (unidimensional) 
o sus trazas sobre la superficie del terreno (bidimensional). La construcción de un sistema tridimensional de fracturas que es representa-
tivo de la realidad se convierte en un problema inverso desafiante, ya que es esencialmente una relación de una realidad con correspon-
dencia a muchas posibilidades diferentes. La mayoría de las metodologías existentes comienzan con asunciones sobre la distribución de 
las propiedades medidas, realizan una serie de correcciones de sesgo y entonces utilizan más asunciones y análisis estereológico para 
establecer un modelo tridimensional de fracturas. La práctica usual es concentrarse en aspectos particulares (parámetros) del modelo de 
fracturas tridimensionales que pueden producir una representación sesgada del sistema de fracturas reales. En este trabajo se describe el 
marco de una optimización sistemática no paramétrica que permite construir un modelo de fracturas tridimensionales más realista ya que 
reproducen mejor los estadísticos de los datos de fracturas obtenidos de mapas. Este enfoque no necesita una corrección por sesgo si el 
muestreo del modelo de fracturas es consistente con el utilizado en la toma de datos. Esta metodología se puede utilizar asimismo para 
evaluar la incertidumbre del modelo de fracturas, el cual es un importante, pero frecuentemente ignorado, componente del modelado en las 
metodologías existentes. Además, esta metodología no paramétrica es flexible y puede tratar con datos de diferentes fuentes (por ejemplo 
diferentes planos de muestreo con diferentes orientaciones o mezclas de muestreos en planos y a lo largo de sondeos). Esto representa un 
avance significativo sobre los métodos existentes ya que diferentes fuentes de datos presentan frecuentemente diferentes características 
estadísticas incluso para el mismo conjunto de fracturas. El conjunto de datos de Stripa Mine se ha usado para demostrar la aplicación del 
método propuesto. 

Palabras clave: modelado de malla de fracturas discretas, mapas de fracturas, optimización sistemáticas del modelo DFN, modelo de frac-
turas de Stripa Mine
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Introduction

In general, a rock mass consists of intact rock and 
fractures/joints. The intact rock component refers to 
the cemented mineral grains plus the voids between 
grains and is normally modelled as a continuous 
medium. In the context of this work, potential mi-
cro-cracks existing within this “intact” rock structure 
are not explicitly identified and are only treated as part 
of the “intact” structure. Fractures on the other hand 
represent discontinuities between intact rocks where 
separation boundaries are clearly observable with the 
naked eye. In the context of the mechanical behaviour 
of rock masses, these discontinuities are usually the 
weakest links in the system and can cause serious sta-
bility issues, while in the context of the flow behaviour 
of rock masses, these discontinuities are usually the 
major conduits that conduct flow through the system 
as, in general, the permeability of fractures could be 
orders of magnitude higher than that of the rock ma-
trix (intact rock), particularly in hard rock settings. In 
other words, fractures may occupy only a small frac-
tion of the total volume in a rock mass, but they play a 
decisive role in determining the mechanical and flow 
behaviours of rock masses.

It is therefore important that the fracture system 
is properly represented in any rock mass model used 
to assess its engineering behaviour. In practice, a 
three-dimensional (3D) fracture system cannot be 
measured directly and only a partial image of the 
system is observable, either in the form of drill-core 
surface images or two-dimensional exposed rock fac-
es. Although various scanning techniques and com-
puted tomography imaging methods are commonly 
used to analyse rock samples, the scale is, in general, 
too small to have much significance for engineering 
applications. 3D fracture mapping based on cut slic-
es through a large block of rock have been conducted 
(Dowd et al. 2015) but this is a costly process that is 
extremely time-consuming and is difficult to adapt to 
wide-spread applications. Other types of data sets of 
fracture systems may also be available from specif-
ic applications (e.g., seismic event points from engi-
neered geothermal reservoirs, see, for example, Xu et 
al., 2013, Xu and Dowd, 2014). 

Data from fracture mapping of drill cores are essen-
tially one-dimensional (1D). Orientations of fractures 
(dip directions and dip angles) can be measured using 
oriented cores. Fracture spacing can also be readily 
measured along drill cores. This data set, however, 
is seriously biased due to the orientation of the drill 
holes although there are techniques for correcting the 
bias in the statistics of fracture spacing (e.g., Terzaghi, 
1964). Data from fracture mapping of exposed rock 

faces are two-dimensional (2D) and can provide much 
more information than 1D data. Scanline surveys can 
be applied to measure fracture spacing (e.g., Priest and 
Hudson, 1981) and both scanline and window surveys 
can be used to measure fracture trace length (Song 
and Lee, 2001, Priest, 2004), which is the most impor-
tant signature of 3D fracture sizes. There is also bias 
in 2D datasets due to the orientation of the sampling 
faces in relation to the inner fracture system. Fracture 
trace length measurement may also be biased due to 
truncation (ignoring small fractures) or censoring (one 
end or both ends of a fracture trace are not visible) be-
cause of the limited size of the sampling face (hence 
the survey window). Again, tools have been developed 
to make corrections in the derived statistics based on 
certain assumptions (e.g., Laslett, 1982). Both rectan-
gular and circular sampling windows have been used 
in published research (Zhang and Einstein, 2000) but 
the latter option naturally avoids the bias issue due 
to the orientation of the sampling window. In general, 
fracture spacing is used to estimate fracture density 
and trace length is used to estimate fracture size, al-
though fracture size estimation from drill-hole image 
logs has also been attempted (Özkaya, 2003).

Fracture mapping data provide the basic inputs for 
the derivation of the parameters of the 3D fracture sys-
tem. The first step of the most common approach is to 
classify mapped fractures into different clusters, rep-
resenting different fracture sets, based on the similari-
ty in fracture orientations (Priest, 1993). The classifica-
tion is based on the belief that fractures formed by the 
same geological or mechanical process will, in gen-
eral, have similar orientation characteristics. Lower 
hemispherical fracture pole projection is the common 
tool used in this analysis. Although various automat-
ic or semi-automatic clustering algorithms have been 
applied with various degrees of success (Mahtab and 
Yegulalp, 1982, Hammah and Curran 1998, Zhan et al., 
2017), manual clustering based on visual inspections 
remains an effective way for fracture set classification. 
After identification of fracture sets, 3D fracture size 
and fracture density parameters are derived on a set 
by set basis, although in some cases correlations be-
tween sets can also be considered (Chiles, 1988, Dowd 
et al. 2007, Long and Billaux, 1987). Current approach-
es usually require assumptions about the statistical 
distributions of the measured features (e.g., fracture 
trace length and fracture spacing), 3D fracture size 
and fracture locations so that their parameters can be 
estimated. Bias corrections are commonly performed 
first on the distribution parameters of the measured 
features before they are used to derive the 3D frac-
ture parameters. Additional assumptions to simplify 
the 3D fracture system are also needed (e.g., uniform 
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distribution of fracture locations) in order to establish 
the relationship between the 3D system and the 2D 
or 1D mapping data based on stereological analysis. 
These assumptions are necessary to reach a solution, 
but they do not necessarily reflect accurately the real-
ity of the mapped fracture system. 

This paper describes a non-parametric optimisation 
process that can be used to estimate the parameters 
of the 3D fracture system based on the statistics of 2D 
or 1D fracture mappings. The process is essentially a 
minimum c2 method, commonly used in statistics to 
maximise the goodness-of-fit of target distributions. 
No assumption about the distributions of the meas-
ured features from the 1D or 2D fracture mappings is 
required and there is no correction of the sampling bi-
ases. In other words, the biased histogram, based on 
the limited size of the scanline or sampling window, 
is used directly in the parameter fitting process. The 
method can also accommodate non-homogeneous 
spatial distributions of fractures, i.e., the common as-
sumption in existing approaches of a uniform random 
distribution of fractures in 3D space is no longer nec-
essary. In practical applications, different types of frac-
ture mappings are commonly employed resulting in 
a dataset comprising different sources (e.g., different 
mapping done on sampling planes with different orien-
tations, a combination of mappings done on rock fac-
es and rock cores), see for example, Rouleau and Gale 
(1985a). A common problem encountered when using 
different sources is that the relative date may produce 
different statistics even for the same fracture set, which, 
for parametric approaches, will pose a serious recon-
ciliation problem. Kulatilake et al. (1993) noted that 
there are significant differences between the estimated 
statistical parameters based on the fracture mapping 
data of the floor and the walls of the Stripa ventilation 
drift, which are likely to be caused by orientation bias. 
The non-parametric approach described in this paper 
is flexible in the sense that it can incorporate different 
biased sampling statistics into the optimisation process 
so that a global optimal solution can be found. The frac-
ture mapping dataset of the Stripa Mine ventilation drift 
are used in this study to demonstrate the application of 
the proposed non-parametric method. 

In the following sections, existing approaches to 
the derivation of parameters of a 3D fracture model 
are briefly reviewed, followed by a description of the 
minimum c2 method. The data set used in this study 
is then introduced, together with a summary of target 
statistics. The proposed method is then applied to the 
case study data set and the parameters of the 3D frac-
ture model are derived. The final model is generated 
and the overall statistics are then analysed and com-
pared with those obtained from the mapping data. 

Brief overview of existing approaches

Fracture size

The assumptions are: 1). fractures can be represent-
ed as circular discs with diameter D; 2). the centres 
of fractures are uniformly randomly distributed in 3D 
space and the volume density follows a Poisson dis-
tribution; 3). fractures in the same set are parallel; 4). 
there is no correlation between fracture size and frac-
ture location; and 5). the sampling plane is infinite and 
thus there is no censoring bias.

Based on these assumptions, an analytical relation-
ship between the statistical distribution of D, g(D), and 
the statistical distribution of the length of the interac-
tion traces between fractures and the sampling plane, 
f(l), can be established based on stereological analysis 
(Warburton, 1980, Zhang and Einstein, 2000):

	 (1)

where  is the mean of D. In practice, to 
make use of Eq. (1), it is important to correct f(l) to 
account for sampling biases. These biases mainly in-
clude (Zhang and Einstein, 2000; Einstein and Baech-
er, 1983): 1). censoring bias due to the limited size of 
the sampling window – long fracture traces may have 
one end invisible (half-censored) or both ends invisi-
ble (fully-censored); 2). truncation bias – small traces 
are not mapped; 3). orientation bias – relative orien-
tations between sampling plane and fractures cause 
different fractures that have different probabilities of 
being intersected by the sampling plane; and 4). size 
bias – larger fractures have a higher probability of 
being sampled. The first two biases can easily be ac-
counted for using statistical approaches and there is 
no shortage of proposed methods depending on the 
assumptions involved (see, for examples, Pahl, 1981, 
Priest and Hudson, 1981, Laslett, 1982, Kulatilake and 
Wu, 1984, Villaescusa and Brown, 1992, Zhang and 
Einstein, 2000, Song and Lee, 2001). Orientation bias 
is difficult to eliminate in practice as normally only a 
few sampling planes are available. However, at the 
very least, a reconciliation of the estimated parame-
ters is necessary if the estimations are to be done on 
different sampling planes. Size bias is normally not 
incorporated directly in the estimation. Note that to 
make the bias correction for f(l), the type of distribu-
tion has to be assumed for f(l) and the bias correction 
will then focus on the correction of the parameters of 
the distribution, such as its mean and standard devi-
ation. Types of distributions for f(l) commonly used in 
practice are exponential, lognormal and gamma distri-
butions (Villaescusa and Brown, 1992, Zhang and Ein-
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stein, 2000, Tonon and Chen, 2007). Note that the trace 
length distribution f(l) can also be estimated from the 
scanline sampling. In this case, the relationship be-
tween f(l) and g(D) that is used is slightly different to 
that in Eq. (1) (Warburton, 1980). 

Once the “true” f(l) is obtained, Eq. (1) can be used 
to derive the distributions for g(D). For analytical solu-
tions, the type of distribution for g(D) must first be 
assumed. The three commonly used types of distribu-
tion for trace length are also commonly used for g(D). 
Based on the assumed distribution, the relationships 
between the parameters of g(D) and f(l), such as mean 
and standard deviation, can then be established. Ex-
amples can be found in Zhang and Einstein (2000), 
Tonon and Chen (2007) and Hekmatnejad et al. (2018) 
who used a distribution-free approach to solve the 
problem. If g(D) is not assumed, numerical solution 
techniques can be used to estimate the distribution 
directly (Kulatilake and Wu, 1986), which requires an 
iteration procedure to find the best solution.

Fracture intensity

Fracture intensity can be expressed using the per-
sistence measure Pij introduced by Dershowitz (Der-
showitz, 1984, Dershowitz and Herda, 1992) where i 
represents the dimension of the measurement region 
(1, 2 or 3) and j represents the dimension of the meas-
ured feature of the fracture (0, 1, 2 or 3). For exam-
ple, P32 is the average fracture area per unit volume 
which is an important measure related to the degree 
of fracturing (fracture intensity) within the rock mass. 
A Discrete Fracture Network (DFN) model can be gen-
erated by matching different fracture intensities but 
the simplest implementation is based on P20 for 2D 
and P30 for 3D applications. P30 (P20) is the average 
number of fractures per unit volume (area), which is 
also commonly referred to as fracture density. This 
definition of fracture density is based on the conven-
ience of representing the location of each fracture by 
a point on the fracture (normally the centre point of 
the fracture). The fracture distribution is then mod-
elled as a point process and the DFN modelling is 
a marked point process as other fracture properties, 
such as fracture size and orientation, are treated as 
random marks associated with the points. The most 
commonly used point process model is the Poisson 
model where points (fracture locations) are uniform-
ly (randomly) distributed in space, even though frac-
ture distributions are generally non-homogeneous 
(Xu and Dowd, 2010). Note that P10 of a fracture set 
is the inverse of the fracture spacing in the normal 
(or average normal) direction of the fracture plane. 

Fracture spacing is a common statistical measure ob-
tained from scanline sampling along the drill cores 
or on exposed rock faces. If the scanline does not 
coincide with the normal direction of the fractures, 
a simple factor of cos a can be applied to correct the 
orientation bias, where a is the acute angle between 
the scanline and the normal direction of the fractures 
(Terzaghi, 1964, Fouché and Diebolt, 2004). Common 
types of distributions for fracture spacing are expo-
nential, lognormal and gamma distributions, where 
exponential distribution arises naturally if fracture 
are uniformly distributed in space (Priest and Hud-
son, 1981). 

In this work, fracture volumetric density, P30, is re-
quired for the DFN modelling. Oda (1982) established 
the relationship between P30 and P10 along a scan-
line as:

P10= π.P30.E[r2 ].E[|n.i|] 	 (2)

where r = D/2 is the radius of circular fracture disc, 
n is the unit vector representing the normal of the frac-
ture plane, i is the unit vector representing the direc-
tion of the scanline and E[.] is the expected value. This 
relationship is used by researchers (e.g., Kulatilake et 
al, 1993) to estimate P30, i.e.:

	 (3)P30=
4P10

π.E[D2].E[|n.i|]

Kulatilake et al. (1993) also established a simple re-
lationship to estimate P30 from P20, as given by:

	 (4)P30=
P20

E[D].E[|sin a |]

where a is the angle between the sampling plane 
and the fracture plane. In these approaches, a Poisson 
distribution of fracture location is assumed. Sampling 
bias due to the limited size of the scanline or sampling 
window must be considered when using these rela-
tionships. Note that the estimations discussed above 
are only for the expected density values. Other distri-
bution characteristics are not considered here.

A general non-parametric estimation method

The c2 test is commonly used to test the goodness-of-
fit of a statistical distribution model. The c2 statistic is 
calculated as:

	 (5)
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where K is the number of mutually exclusive class-
es used to cover the range of values for the random 
variable, and are the observed and expected numbers 
(based on an assumed distribution) of values of the 
random variable that fall within class i. Statistic of Eq. 
(5) follows a c2 distribution in the limit when the total 
number of observations becomes large. The statistic 
quantifies the total percentage difference between the 
observed and the tested distributions and therefore 
a smaller value means a better goodness-of-fit of the 
observation to the assumed distribution.

In this study, a version of the c2 statistic is calculat-
ed for trace length and fracture spacing. These statis-
tics are used to set up the primary objectives for the 
optimisation process to derive the parameters of the 
3D fracture system. In this case, the tested distribu-
tion models (corresponding to the expected number 
of observations ) are in fact the target distributions 
obtained directly from the fracture mapping data. The 
observed distribution models (corresponding to the 
number of observations xi) are the empirical distribu-
tion obtained by sampling the trial 3D fracture system 
(model). The modified c2 statistics used in this applica-
tion are calculated as:

	
(6)

where pi and qi are the relative frequencies of the 
fracture model and target distributions in class i. 
The calculated statistic is then used to quantify the 
goodness-of-fit of model to the target distribution.

The key differences between this non-parametric 
approach and the traditional approach described in 
the previous sections are that it is not necessary to as-
sign a distribution type to the measured features (e.g., 
trace length or fracture spacing) and it is not neces-
sary to correct for bias. The target distributions that 
are to be matched by the model stay in non-paramet-
ric forms. Of course, simulation is needed to sample 
the fracture model and this can be done in the same 
way as that used in the fracture mapping process.

The main characteristics of the 3D fracture system 
that need to be derived from the optimisation are the 
fracture size distribution g(D) (or g(r)) and the fracture 
density P30(X), which in general depends on location 
X (i.e., a non-homogeneous spatial distribution). Al-
though in this study both the size distribution and 
the density are found for each fracture independently 
(i.e., assuming no correlation between fracture sets), 
the method can easily be extended to cover fracture 
set correlations such as the hierarchical model de-
scribed in Lee et al. (1990) or the cluster model de-
scribed in Xu and Dowd (2010). The flowchart of the 
proposed optimisation process is shown in Fig. 1.

For each set of g(D) and P30(X) models, M num-
ber of independent realisations are used to derive 
reliable statistics, including the range of variations 
which can later be used to quantify the uncertainty 
of the estimates. This is repeated for all sets of mod-
els and the set with the minimum c2 statistics will 
be regarded as the optimal solution. A brute-force 
search scheme can always be used if the combined 
search space for the model parameters is limited. 
If the number of parameters is significantly high, 
smarter search techniques such as Markov chain 
simulation can be used (Xu et al. 2013). If the spa-
tial distribution of fractures is homogeneous (i.e., 
constant P30), or if there is no correlation between 
fracture size and fracture location, the distribution 
of fracture trace length will be independent of frac-
ture density (see also Eq. (1)). In this case, the op-
timisation process can focus first on g(D) for a set 
fracture density value. The optimal solution found 
for g(D) is then used to optimise the P30(X) model. 
However, fracture size and fracture density could be 
correlated. For example, there may be a systemat-

Figure 1. Flowchart of the proposed optimisation process.
Figura 1. Diagrama de flujo del proceso de optimización propuesto.
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ic change in terms of fracture density and fracture 
size against depth (Xu and Dowd, 2010). In this case, 
the parameter space defined by the range of [g(D), 
P30(X)] must be fully searched jointly to find the op-
timal solution. Note that although the fracture size is 
written as g(D), the proposed optimisation framework 
is completely general for different types of fracture 
geometries. Observations of both equidimensional 
fractures (i.e., approximately circular) and non-equi-
dimensional fractures are reported in the literature 
(Zhang and Einstein, 2000). If a geometry other than a 
circle is assumed for the fractures, the same optimisa-
tion process shown in Fig. 1 can still be followed with 
some added parameters in the DFN model.

One major advantage of this non-parametric opti-
misation approach is that the sampling bias correc-
tions for the target statistics are no longer necessary 
because both the target and model statistics are bi-
ased in the same way (truncation, censoring or orien-
tation). This does not necessarily mean that biases no 
longer need to be considered in this model optimisa-
tion process. In fact, if the sampling window is limit-
ed in size (such as in the case study described later), 
censoring can become serious and therefore the cen-
soring statistics of fracture traces should also be built 
into the decision process. These statistics include the 
proportions of fractures traces with both ends visible 
(T0), one end visible (T1) and both ends invisible (T2). 
In this case, to ensure that target and model statistics 
are comparable, the same sampling window must be 
used for the fracture mapping data and for sampling 
the DFN models.

Figure 2. Experimental area at Stripa Mine (Rouleau et al. 1981).
Figura 2. Área experimental en Stripa Mine (Rouleau et al., 1981).

Figure 3. A typical map of fracture traces (Rouleau et al., 1981).
Figura 3. Un mapa típico de trazas de fractura (Rouleau et al., 1981) 
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A case study – the Stripa Mine fracture dataset

The Stripa Mine is an old iron ore mine located ap-
proximately 145 km west of Stockholm, Sweden. It was 
the test site for a comprehensive research and de-
velopment programme on nuclear waste storage in 
fractured granitic rocks in the 1970s and 80s (Rouleau 
et al. 1981, Rouleau and Gale, 1985a, 1985b). The ex-
perimental area at Stripa included several drifts in the 
crystalline rock 340 m below the surface, as shown in 
Fig. 2. The ventilation drift, approximately 45 m long, 
located at the north of the test area, was excavated 
mainly for the fracture hydrology experimental pro-
gramme. For this purpose, detailed fracture mapping 
was performed in the major section of the drift, includ-
ing mappings of the floor and the two walls. A typical 
map of fracture traces is shown in Fig. 3. All fractures 
are numbered, and their strike and dip directions are 
recorded together with their length rounded to the 
nearest metre, aperture, infill materials and fracture 
roughness. A truncation threshold of 0.5 m was used 
and only fracture traces greater than the threshold 
were mapped. The measurements are coded in a text 
file available in Rouleau et al. (1981). Part of this da-
taset (a section of 10m) was used in Kulatilake et al. 
(1993) to demonstrate their technique to derive the 
fracture model for the mine site using the traditional 
parametric approach discussed above.

A total of 279 fracture traces were mapped on 
the East wall, which is 36 m long; 338 fracture trac-
es were mapped on the West wall which is 56 m long; 
371 fracture traces were mapped on the floor, which 
is 42 m long; and 38 fracture traces were mapped on 
the northern end face of the drift. Note that there are 
densely fractured zones (e.g., areas with dotted lines 
in Fig. 3) with fracture trace lengths < 0.5 m and frac-
ture spacing ranging from less than 5cm to 10 cm in 
the area, which are not considered herein. Poles of 
the mapped fractures were plotted using lower hemi-
spherical equal-area projection for fracture set classi-
fication, as shown in Fig. 4.

Clearly there are three major clusters, sets 1, 2 and 
3. Set 4 is not significant, but it does show a certain 
degree of concentration. Set 5 is the background set 
which account for all fractures not assigned to the 
four clusters. Note that this fracture set classification 
is slightly different to that documented in Rouleau and 
Gale (1985) for the ventilation drift where sets 2 and 3 
shown in Fig. 4 were combined into one set. Fractures 
not assigned to any of the clusters were ignored in 
their classification (i.e., no background set), although 
these fractures make up about half of all the fractures 
mapped (see Table 1). The features of the clusters 
shown in Fig. 4 were also further confirmed by incor-
porating an additional 1622 fractures mapped from 
boreholes drilled in the ventilation drift (Rouleau and 
Gale, 1985a). For the classification shown in Fig. 4, the 
orientation statistics are listed in Table 1.

Figure 4. Lower hemispherical equal-area project of poles of frac-
tures.
Figura 4. Hemisferio inferior de la proyección equiareal de polos de 
fracturas.

Set # fractures % Mean dip direc-
tion (o) Mean dip angle (o) Fisher dispersion 

parameter k

1 182 18 17.91 71.08 55.57

2 136 13 84.82 20.45 56.65

3 154 15 182.13 19.54 46.76

4 90 9 272.74 59.95 38.31

5 (Background) 464 45 171.53 13.72 1.47

Table 1. Orientation statistics for the classified fracture sets shown in Fig. 4.
Tabla 1. Estadísticos de orientación para las familias de fracturas clasificadas y mostradas en la Fig. 4.
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Figure 5. Mapped fracture traces on East wall, floor and West wall. S1, S2, S3, S4 and S5 denote the five fracture sets.
Figura 5. Trazas de las fracturas cartografiadas en la pared Oeste, suelo y pared Este. S1, S2, S3, S4 y S5 denotan los cinco conjuntos de 
fracturas.
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Once fracture sets are classified, fracture trace maps 
such as the one shown in Fig. 3 need to be digitized 
for different fracture sets. The trace length recorded in 
the original data file was rounded to the nearest metre 
and the location of the trace was recorded as the ID of 
areas where the fracture trace was first encountered. 
This information is not adequate to derive the statis-
tics of trace length and fracture spacing. The digitised 
trace maps for each set of fractures are shown in Fig. 
5. The length of the mapped east wall is set at 37 m, 
the floor at 43 m and the west wall at 57 m. The vertical 
height of the mapped wall or the width of the mapped 
floor displayed is 4 m. Note that the arched profile of 
the tunnel walls is ignored in this work. The estimated 
P20 for each case is also given. 

The fractures in fracture set 1 are sub-vertical with 
a mean dip angle of 71o, dipping approximately at an 
azimuth of 18o (left boundary of Fig. 5 is the north face 
of the ventilation drift). This set of fractures shows 
up reasonably well on all three mapping planes with 

the fracture density (P20) of the floor slightly higher 
than that of the walls. The fractures can be consid-
ered approximately evenly distributed. The scanlines 
to be used will be oriented along the drift direction, 
i.e., parallel to the axis of the tunnel, which will en-
sure that most fractures will be intersected. Note that 
in the method presented here, it is not absolutely nec-
essary for the scanlines to be perpendicular to the 
mean fracture plane of the fracture set. No correction 
of the scanline orientation bias is necessary as long 
as the scanlines can intersect fractures at a reasona-
ble angle. The sizes of the traces shown on the three 
mapping planes are very similar which suggests that 
an equidimensional assumption (i.e., circular disc) is 
acceptable for this set of fractures.

Fracture set 2 comprises sub-horizontal fractures 
with a mean dip angle of 20o, dipping approximate-
ly towards the East (going into the page on the East 
wall images). The fracture traces on the two walls are 
consistent in terms of the orientation of the fracture 

Figure 6. Trace length distributions (horizontal axis is trace length l in metres and vertical axis is relative frequency).
Figura 6. Distribuciones de longitud de trazas (el eje horizontal es la longitud de la traza l en metros y el eje vertical es la frecuencia relativa).
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set. For the floor, the mapping plane orientation bias 
appears to be significant in this case as the character-
istics of the traces are quite different to those shown 
on the two walls. In terms of the spatial distribution 
of fractures, set 2 has a higher degree of non-homo-
geneity than set 1. However, a uniformly distributed 
model is still used in this exercise for reasons of sim-
plicity. Note that towards the south of the West wall 
(right side of West wall images), there is a cluster of 
fracture traces. This cluster may cause an overestima-
tion of the fracture density for this fracture set (see 
later discussion). The orientation of the scanlines will 
again be parallel to the axis of the tunnel to ensure the 
maximum number of intersections, even though ap-
proximately vertical scanlines should be used for this 
fracture set to minimise scanline orientation sampling 
bias. As the optimisation technique described in this 
paper does not depend on the statistics corrected for 

sampling biases, it is more important to use scanlines 
that have more fracture intersections so that more re-
liable statistics can be obtained, even if they are bi-
ased. An equidimensional assumption will again be 
used for fracture size.

Fracture set 3 comprises sub-horizontal fractures 
with a mean dip angle of 19.5o, dipping approximate-
ly towards the south (right side of the images shown 
in Fig. 5). Although the fracture traces shown on the 
three mapping planes are consistent with the orienta-
tion of this set of fractures, a significant issue is that 
the fracture density on the east wall is approximately 
four times higher than the fracture densities of the oth-
er two mapping planes. This is inconsistent with the as-
sumption of a random distribution and suggests that a 
non-homogeneous fracture distribution model is more 
appropriate for this fracture set. However, as there is 
not sufficient fracture mapping to define the variation 

Figura 7. Fracture spacing distributions (horizontal axis is fracture spacing in metres and vertical axis is relative frequency).
Figura 7. Distribuciones de espaciado de fracturas (el eje horizontal es el espaciado de fracturas en metros y el eje vertical es la frecuencia 
relativa).
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of fracture distributions in the East-West direction, an 
average fracture density is used in this exercise. 

Fracture set 4 has a dip angle of 60o, dipping ap-
proximately towards the West (coming out of the page 
on the East wall images). Fracture traces shown on the 
three mapping planes are consistent with the orienta-
tion of the fracture set. The number of fractures for this 
set of fractures is small, particularly for the East wall.

Fracture set 5 is the background set with assumed 
purely random orientations. The fracture density val-
ues of the East wall and the floor are similar but that 
for the West wall is much lower. This, together with the 
features of fracture set 3, suggest that the East wall 
is much more fractured than the West wall (overall 
P20 = 1.8851, 2.1570, 1.4825 for East wall, floor and 
West wall) and therefore a non-homogeneous fracture 
distribution model is more appropriate. However, as 

mentioned above, two fracture mapping planes in 
the East-West direction are not sufficient to define a 
non-homogeneous model and therefore an overall av-
erage homogeneous model is used in this exercise.

Target Statistics

The target statistics for the model to match in our ap-
proach are raw sampling statistics without any bias 
correction. As different sampling planes with different 
orientations will, in general, produce different sam-
pling statistics, two sets of target statistics will be de-
rived in this case: one from the fracture mappings of 
the two walls (vertical sampling plane) and the other 
from the floor (horizontal sampling plane). Statistics 
of two fracture characteristics are required, one for the 

Figura 8. Comparison of target statistics between different fracture sets (horizontal axis is trace length (left) or fracture spacing (right) in 
metres and vertical axis is cumulative frequency).
Figura 8. Comparación de los estadísticos objetivo entre diferentes conjuntos de fracturas (el eje horizontal es la longitud de la traza (iz-
quierda) o espaciado de fracturas (derecha) en metros y el eje vertical es la frecuencia acumulada).

Set 1 Set 2 Set 3 Set 4 Set 5 All sets

No censoring
(T0)

East Wall 63.64 93.1 98.46 76.92 90.48 87.73

West Wall 76.79 94.05 95.65 88.1 80.83 85.54

EW Average 70.22 93.58  97.06 82.51 85.66 86.64

Floor 50.56 70.37 90.32 86.21 72.57 70.21

One end cen-
sored
(T1)

East Wall 36.36 6.9 1.54 23.08 9.52 12.27

West Wall 23.21 5.95 4.35 11.9 19.17 14.46

EW Average 29.78 6.42 2.94 17.49 14.34 13.36

Floor 48.05 29.63 9.68 13.79 27.43 29.5

Both ends 
censored
(T2)

East Wall 0.0 0.0 0.0 0.0 0.0 0.0

West Wall 0.0 0.0 0.0 0.0 0.0 0.0

EW Average 0.0 0.0 0.0 0.0 0.0 0.0

Floor 1.3 0.0 0.0 0.0 0.0 0.29

Table 2. Fracture censoring statistics (% of total traces).
Tabla 2. Estadísticos censurados de fracturas (% de trazas totales).
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trace length used to optimise the fracture size parame-
ters and the other for the fracture spacing to be used to 
optimise the 3D fracture density. For trace length, the 
rectangular sampling window is defined as the size of 
the fracture mapping window, i.e., 4 m x 37 m for the 
East Wall, 4 m x 43 m for the floor and 4 m x 57 m for 
the West Wall. For fracture spacing, four scanlines par-
allel to the axis of the tunnel are used for fracture sets 
1 and 5 for each mapping face, located at 0.5 m, 1.5 m, 
2.5 m and 3.5 m along the width of the sampling win-
dow. For fracture sets 2, 3 and 4, where four scanlines 
are not sufficient to derive the required statistics (too 
few intersections with fracture traces), the number of 
scanlines is increased systematically until reliable sta-
tistics on fracture spacing are obtained. The target sta-
tistics for trace length are shown in Fig. 6 and the target 
statistics for fracture spacing are shown in Fig. 7.

Clearly, the trace length distributions are positively 
skewed, which is consistent with many observations 
in practice (Zhang and Einstein, 2000, Hudson and 
Priest, 1983). Most published datasets suggest the 
type of distribution as exponential, lognormal or gam-

ma, although fitting a model is not entirely necessary 
in the non-parametric approach described in this pa-
per. For the Stripa dataset, the trace lengths from the 
two walls tend to follow a lognormal distribution for 
all fracture sets, while the trace length obtained from 
the floor mapping suggests an exponential distribu-
tion. As shown in Fig. 6, a much greater proportion of 
small fracture traces are observed on the floor (hori-
zontal plane) than on the two walls (vertical plane). 
This suggests that the 3D fractures in this mine site 
may not follow exactly the equidimensional assump-
tion, at least for some of the fracture sets. However, 
as the overall trends are still largely similar, for sim-
plicity the equidimensional assumption is used in this 
work to demonstrate the application of the proposed 
method. In terms of the target statistics, the average 
of the two walls will be used for the vertical sampling 
plane and that of the floor will be used for the horizon-
tal sampling plane. Fig. 8a shows a comparison of the 
average target statistics of the trace lengths of differ-
ent fractures sets. From the figure, it is reasonable to 
assume that the statistical characteristics of the frac-

Figura 9. c2 values of the fracture sets at different l values (horizontal axis is l and vertical axis is c2).
Figura 9. Valores c2 de los conjuntos de fracturas para diferentes valores l (el eje horizontal es l y el eje vertical es c2).
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ture lengths of different sets of fractures are largely 
the same. This suggests that the fracture sizes of dif-
ferent fracture sets may, in this case, follow the same 
or a similar distribution with similar parameters. This 
observation will be further explored in the parameter 
optimisation process discussed later.

The fracture spacing distributions are positively 
skewed, which is as expected from extensive pub-
lished observations (Priest and Hudson, 1981). The 
types of distributions commonly used in published 
research include exponential, lognormal and gamma, 
with the exponential as the most popular as it is the de 
facto type of distribution if the fracture distribution in 
space is purely random. For the Stripa data set, frac-
ture spacing for Sets 1, 2 and 5 are clearly exponential, 
but not Sets 3 and 4. This is consistent with the discus-
sion on the fracture distributions in Fig. 5, although 
there is a smaller number of fractures in Set 4. For 
the target statistics to be used in the parameter opti-
misation process, the average of the two walls will be 
used for the vertical sampling plane and the floor will 
be used for the horizontal sampling plane. A compari-
son of the average target statistics of fracture spacing 

for the different fracture sets is given in Fig. 8b, which 
clearly shows significant differences. Distributions for 
fracture sets 2, 3 and 4 are similar, although fracture 
set 3 shows a significant upper tail for spacing great-
er than 20 m. Sets 2 and 4 are very similar although 
set 2 has a much higher proportion of smaller fracture 
spacing. Fracture set 5 has the smallest fracture spac-
ing, followed by fracture set 1. From Fig. 8b, it is rea-
sonable to expect that the fracture density for fracture 
set 5 will be the highest, followed by set 1 and then 
set 2, 3 and 4, under the assumption of a random dis-
tribution of fracture orientations. As this assumption 
is certainly not true, these expectations may not cor-
rectly reflect the actual fracture density values. Sets 2, 
3 and 4 should have similar density values although 
the density of set 3 should be slightly lower – without 
considering orientation bias. 

The additional statistics that will be used in the pa-
rameter optimisation process are the fracture censor-
ing statistics listed in Table 2, which show that there 
are almost no long fracture traces for which both ends 
are censored. The majority of traces are fully contained 
within the defined sampling window (overall average 

Figure 10. c2 values of the fracture sets at different P30 values (horizontal axis is P30 and vertical axis is c2).
Figura 10. Valores c2 de los conjuntos de fracturas para diferentes valores P30 (el eje  horizontal es P30 y el eje vertical es c2).
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> 80%). This suggests that fractures in the Stripa Mine 
are, in general, small in size with the average much 
less than 4 m. Note that the censoring statistics are 
only used when there are difficulties in making deci-
sions when c2 statistics are used alone.

Parameter Optimisation

Fracture Size

As discussed above, an equidimensional fracture 
model will be used to demonstrate the parameter opti-
misation process to derive the parameters for the dis-
tribution function g(r), where the radius of the fracture 
disc instead of the diameter is modelled. As a simple 
example to demonstrate the technique, an exponen-
tial model is used for which only one parameter (l) is 
required, i.e., , where the mean fracture size is 1/l. For 
fracture density, under the assumption of a random 
distribution, the relationship between f(l) and g(r) does 
not depend on P30. Therefore, P30 is set to 1.0 in the 
optimisation for the fracture size distribution param-
eters.

Fig. 9 shows the variation of c2 for the fracture sets 
at different l values, where c2 is calculated for the 
trace length target statistics shown in Fig. 6 and by 
sampling 3D DFN models. The volume used for the 
3D DFN simulation is 37 m x 6 m x 6 m, where the 
enlarged cross-sectional area (6 m x 6 m) is used to 
reduce the potential boundary effect. The sampling 
plane is 37 m x 4 m, either oriented vertically simu-
lating the wall sampling or horizontally simulating the 
floor sampling. A total of 40 independent simulations 
were generated for each set of parameters to quantify 
the 95% confidence interval of the derived statistics. 

The l values for fracture set 1 optimised for the wall 
and floor target statistics are both at l = 2.2. This set of 
fractures intersect the axis of the tunnel at a high an-
gle and, as can be seen from Fig. 5, fracture traces for 
this set of fractures were well captured in both the wall 
and floor mappings and therefore the optimisation 
from both target statistics is expected to yield similar 
answers. For fracture set 2, as can be seen from Fig. 

5, the wall and floor target statistics are significantly 
different as are the optimised results shown in Fig. 9. 
As this set of fractures is sub-horizontal, some differ-
ences are expected due to the sampling plane orienta-
tions, but the amount of the difference is unexpected. 
Based on the wall target statistics, l = 2.2, but based 
on the floor target statistics l = 8.8, which is clearly 
unrealistic in this case. For the censoring statistics, at 
l = 2.2, (T0, T1) = (93.8%, 6.2%) and (89%, 11%) for wall 
and floor sampling respectively, compared with the 
target statistics of (93.4%, 6.6%) and (70.4%, 29.6%) 
respectively. For l = 8.8, (T0, T1) = (98%, 2%) and (99%, 
1%) for wall and floor sampling, which indicates a 
much worse fitting in terms of censoring statistics. As 
discussed above, the similarity of the distributions of 
trace lengths suggests similar statistical characteris-
tics of fracture sizes for different fracture sets, there-
fore l = 2.2 based on wall mapping was chosen for this 
fracture set. For fracture set 3, the same problem is 
encountered due to significantly different target sta-
tistics derived from wall and floor mappings and the 
final optimised value is the one derived from the tar-
get statistics of wall mapping, i.e., l = 2.2. Fracture set 
4 has only a small number of fractures. The optimisa-
tion based on the wall mapping gives l = 2.2 and that 
based on the floor mapping gives l = 2.0. Again, the 
value of l = 2.2 is chosen. This parameter gives the 
censor statistics of (T0, T1) = (85%, 15%) and (91%, 9%) 
for wall and floor sampling planes, compared with the 
corresponding target censoring statistics of (82.5%, 
17.5%) and (82.2%, 13.8%) respectively. For fracture 
set 5, the optimised l based on wall statistics is 3.4 
and that based on floor statistics is 4.8. As this back-
ground set of fractures has a random distribution in 
terms of fracture orientation, the statistics from the 
wall and the floor mappings can be combined. The op-
timisation using the combined statistics gives l = 2.8, 
which will be the chosen l value for this fracture set. In 
terms of censoring statistics, this l value gives (T0, T1) 
= (78%, 22%) for vertical and (74%, 26%) for horizontal 
plane sampling, which compares favourably with the 
corresponding target statistics of (86%, 14%) for wall 
and (72.6%, 27.4%) for floor mapping. Table 3 summa-

Set 1 Set 2 Set 3 Set 4 Set 5

l 2.2 2.2 2.2 2.2 2.8

P30 0.6 1.0 0.6 0.8 2.6

Table 3. Optimised fracture set parameters based on the assumptions of exponential distributions of fracture sizes and a Poisson distribu-
tion for fracture locations.
Tabla 3. Parámetros optimizados para los diferentes conjuntos de fracturas basados en las asunciones de distribuciones exponenciales de 
tamaños de fracturas y distribución de Poisson para las localizaciones de las fracturas.
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rises the final optimised parameter l for all five frac-
ture sets. These optimised parameters are then used 
in subsequent optimisation for fracture spacing.

Fracture density

Similar procedures (cf. Fig. 1) will be followed to de-
rive the optimal values for the fracture density for each 
fracture set, based on the fracture spacing target sta-
tistics shown in Fig. 7. 

For fracture set 1, the optimised P30 value based 
on the fracture spacing for the wall mapping is 0.5 and 
that based on the floor mapping is 0.9. As this set of 
fractures dips approximately 70o with a dip direction 
of approximately 18o from North, the vertical and hori-
zontal sampling planes will intersect the fractures at 
approximately the same angle. Therefore, similar fea-
tures in terms of fracture intersections should be ex-
pected, which are evident in the patterns shown in Fig. 

Figure 11. A realisation of the optimised fracture model.
Figura 11. Una realización del modelo de fracturas optimizado.

5. For this reason, the target statistics from wall and 
floor mappings can be combined to derive the opti-
mal value for P30 and the result is P30 = 0.6 as shown 
in Fig. 10. For fracture set 2, the optimised P30 from 
wall and floor mappings is between 1.0 to 1.8. This set 
of fractures is sub-horizontal and significantly differ-
ent features are expected from vertical and horizontal 
plane sampling due to the orientation bias. The target 
statistics, therefore, cannot be combined for the opti-
misation. After close inspection of the difference be-
tween the model and target statistics, it was decided 
to use P30 = 1.0 since after that value there is no signif-
icant change in the goodness of fit. For fracture set 3, 
P30 was optimised based on the target statistics of 0.4 
for wall mapping and 1.1 for floor mapping. Again, on 
close inspection of the differences between the target 
and model statistics, the compromise choice was P30 
= 0.6. For fracture set 4, the optimised P30 values from 
the target statistics of both the wall and floor mappings 
are almost identical with the best choice being P30 = 

Figure 12. An example of fracture traces of vertical (top) and horizontal (bottom) sampling planes of the DFN model.
Figura 12. Un ejemplo de trazas de fracturas de los planos de muestreo vertical (figura superior) y horizontal (figura inferior) del modelo DFN. 
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0.8. For fracture set 5, the P30 based on wall mapping 
is 2.2 and that based on floor mapping is 2.6. As the 
orientations of this set of fractures follow a random 
distribution, both statistics can be combined. The op-
timised P30 based on the combined statistics is P30 = 
2.6. The final optimised P30 values are listed in Table 3.

Some of the optimised P30 values seem to be high, 
e.g., that for set 5. This is mainly caused by the large 
l value of the corresponding fracture set. For fracture 
set 5, l = 2.8 means that their average fracture radius is 
0.36 m (or diameter 0.72 m). As a truncation threshold 
of 0.5 m was applied in fracture mapping, only 50% of 
the fractures in this set (with r > 0.25m) will have any 
chance of being recorded in the fracture trace maps. 
For this reason, a large number of fractures will have 
to be generated in order to have sufficient fracture in-
tersections (with trace length > 0.5 m) to match that 
observed in the trace maps. Hence, P30 will be high. 
For the other fracture sets, the percentages of gener-
ated fractures that have sizes less than 0.5 m, and thus 
have no chance of being recorded, are 14% for sets 1 

Figure 13. Comparison of model and data statistics of trace length (top) and fracture spacing (bottom) of all fracture sets (horizontal axis is 
trace length (top) and fracture spacing (bottom) in metres and vertical axis is relative frequency).
Figura 13. Comparación entre  el modelo y estadísticos de los datos de longitud de la traza (parte superior) y espaciado de fracturas (parte 
inferior) de todos los conjuntos de fracturas (el eje horizontal es la longitud de la traza (parte superior) y espaciado de fracturas (parte 
inferior) en metros y el eje vertical es la frecuencia relativa.

and 3, 22% for set 2 and 18% for set 4. As there was 
no report of any significant number of small-size frac-
tures in the drift, this is perhaps an indication that the 
exponential fracture size distribution is not a suitable 
assumption for this dataset. The Stripa fracture map-
ping work report (Rouleau et al. 1981) does mention 
that there is a large number of small-scale fractures 
(with trace length < 0.5 m and a spacing of 5 to 10 
cm) observed on the walls and the floor, but these frac-
tures occur in clusters termed fractured zones in the 
report. They are fundamentally different to small-scale 
fractures due to an assumed size distribution and are 
expected to be uniformly distributed in space based 
on the model used. For these reasons, a lognormal 
distribution for fracture size may be a better choice in 
this case.

Stripa 3D fracture model

Based on the optimised parameters described above, 
the 3D fracture model of the Stripa Mine can be crea-
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Figure 14. Comparison of model and target statistics for fracture set 1 (horizontal axis is trace length (top) and fracture spacing (bottom) in 
metres and vertical axis is relative frequency).
Figura 14. Comparación de los estadísticos del modelo y objetivo para el conjunto 1 de fracturas (el eje horizontal es la longitud de la traza 
(parte superior) y el espaciado de fracturas (parte inferior) en metros y el eje vertical es la frecuencia relativa).

ted using the parameters shown in Table 3. An exam-
ple is shown in Fig. 11 for one realisation of the model 
generated for a tunnel of 40 m long with a 4 m x 4 m 
cross-section. 

To assess whether the target statistics are repro-
duced by the model, 40 independent realisations of 
the model were generated and sampled on a vertical 
plane (to represent wall mapping) and a horizontal 
plane (to represent floor mapping) to derive statis-
tics for fracture trace length and fracture spacing, as 
shown in Fig. 12. The results are shown in Fig. 13. As 
can be seen, the target statistics are reproduced rea-
sonably well. For fracture trace length, based on the 
horizontal (floor) sampling plane, the small size trac-
es are under-represented in the model. This is mainly 
due to the exceptionally large proportion of smaller 
size traces on the floor mapping of fracture sets 2 and 
3. Overall the match between model and target sta-
tistics of trace length is satisfactory, given the com-
promise used in the parameter optimisation process 
discussed above. For fracture spacing, the model 

statistics agree extremely well with the target statis-
tics, suggesting that the fracture densities of fracture 
sets (with size > 0.5 m) are correctly represented in 
the model. Note that in Fig. 13, the ± 95% confidence 
intervals based on the simulations are also plotted. As 
an additional validation based on the simulations, the 
censoring statistics and 95% confidence intervals for 
a vertical sampling plane (wall) are: T0 (no censoring) 
- 84% (81% - 88%) and T1 (one end censoring) - 16% 
(12% - 18%), compared with the target statistics of T0 
– 86.6% and T1 – 13.4%. The censoring statistics for 
the horizontal sampling plane (floor) are: T0 (no cen-
soring) - 80% (77% - 85%) and T1 (one end censoring) 
- 20% (15% - 22%), compared with the target statistics 
of T0 – 70.2% and T1 – 29.5%. The censoring statistics 
from the model match very well those of the wall map-
ping, while they are reasonably close to those of the 
floor mapping. 

To evaluate further the reproduction of target sta-
tistics for individual fracture sets, comparisons be-
tween model and target statistics are summarized in 
Figs. 14 – Fig. 18. 
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Figure 15. Comparison of model and target statistics for fracture set 2 (horizontal axis is trace length (top) and fracture spacing (bottom) in 
metres and vertical axis is relative frequency).
Figura 15. Comparación de los estadísticos del modelo y objetivo para el conjunto 2 de fracturas (el eje horizontal es la longitud de la traza 
(parte superior) y el espaciado de fracturas (parte inferior) en metros y el eje vertical es la frecuencia relativa).

 As can be seen from these figures, the target 
statistics of fracture set 1 are reproduced very well, 
particularly for the fracture spacing. For fracture set 
2, the statistics from wall mapping are modelled rea-
sonally well, but the trace length of the floor map-
ping is under-represented by the model for smaller 
values. This is a consequence of the compromise of 
selecting a l value based only on the statistics of wall 
mapping, due to the difficulty of finding a suitable 
value from the fracture traces obtained from the floor 
mapping, as discussed above. For fracture sets 3 and 
4, the match between model and target statistics is 
in general satisfactory, although the 95% confidence 
intervals are large due to th e small number of frac-
tures and erratic variations in the derived statistics. 
For fracture set 5, the model statistics again agree 
well with the target statistics, particularly for the frac-
ture spacing.

Based on the comparison analysis, it is reasona-
ble to conclude that the simple technique described 
in this paper is an effective non-parametric method 
for rock fracture modelling. The target statistics used 
in this paper are mainly the trace length and fracture 
spacing distributions, however, the technique is gen-

eral and flexible as additional optimisation criteria 
(e.g., for fracture orientations or fracture connectivity 
measures) can easily be incoporated into the optimi-
sation process. Note that the work described here is 
only to demonstrate the framework of the non-par-
ametric method and by no means it can be claimed 
that the derived fracture model is the “best” model 
to represent the Stripa data set. As discussed above, 
the assumption of an exponential distribution for 
the fracture size may not be suitable in this case. The 
assumption of a uniform distribution for fracture lo-
cations may also be an over-simplification for some 
fracture sets in this dataset. It is worthwhile explor-
ing other potential models in future work to obtain 
a better understanding of the fracture model for the 
Stripa Mine.

Conclusions

This paper describes a non-parametric method to deri-
ving a discrete fracture model based on fracture map-
pings of multiple sampling planes at different orienta-
tions. It differs from traditional approaches in that no 
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Figure 16. Comparison of model and target statistics for fracture set 3 (horizontal axis is trace length (top) and fracture spacing (bottom) in 
metres and vertical axis is relative frequency).
Figura 16. Comparación de los estadísticos del modelo y del  objetivo para el conjunto 3 de fracturas (el eje horizontal es la longitud de la 
traza (parte superior) y el espaciado de fracturas (parte inferior) en metros y el eje vertical es la frecuencia relativa).

Figure 17. Comparison of model and target statistics for fracture set 4 (horizontal axis is trace length (top) and fracture spacing (bottom) in 
metres and vertical axis is relative frequency).
Figura 17. Comparación de los estadísticos del modelo y del  objetivo para el conjunto 4 de fracturas (el eje horizontal es la longitud de la 
traza (parte superior) y el espaciado de fracturas (parte inferior) en metros y el eje vertical es la frecuencia relativa).



420

Chaoshui Xu, et al., 2020. Non-parametric three-dimensional discrete fracture… Boletín Geológico y Minero, 131 (3): 401-422

Figure 18. Comparison of model and target statistics for fracture set 5 (horizontal axis is trace length (top) and fracture spacing (bottom) in 
metres and vertical axis is relative frequency).
Figura 18. Comparación de los estadísticos del modelo y del  objetivo para el conjunto 5 de fracturas (el eje horizontal es la longitud de la 
traza (parte superior) y el espaciado de fracturas (parte inferior) en metros y el eje vertical es la frecuencia relativa).

assumption is needed for the distributions of sample 
statistics, such as the fracture trace length and fracture 
spacing, and no sampling bias correction is necessary 
prior to the parameter fitting process. This alleviates 
the inconsistency problem that sample statistics from 
different sampling planes for the same fracture set can 
give different distribution characteristics, as demons-
trated in the Stripa dataset used in this studty.

c2 statistics are used in this approach to quantify 
the goodness-of-fit of model statistics to the target 
statistics. To ensure that the comparison is done on 
the same statistical features, the sampling planes 
and sampling techniques used for the model should 
be identical to those used to collect the dataset. The 
non-parametric approach then searches the parame-
ter space to find the set of parameters that give the 
best goodness-of-fit of model statistics to the target 
statistics. To account for the stochatistic nature of the 
approach, a certain number of Monte Carlo realisa-
tions are used to derive the statistics for each set of 
parameters. Using multiple independent simulations 
also helps to quantify the uncertainties associated 
with the model statistics, hence the uncertainties of 
the derived parameters.

For the Stripa data set, the fracture mappings of 
the two walls and the floor of the ventilation drift are 
used as a case study to demonstrate the quality of the 
described method. Fracture set classification is based 
on stereographic analysis, which allowed the identifi-
cation of five sets of fractures including four orienta-
tion clusters and one background set with completely 
random orientation distribution. On the assumption of 
an exponential distribution for the size of equidimen-
sional 3D fractures, the application of the parameter 
optimisation based on trace length gives the param-
eter l values of 2.2 for fracture sets 1 to 4 and 2.8 for 
fracture set 5. For fracture density, a uniform distribu-
tion of fracture locations is assumed and the applica-
tion of the parameter optimisation based on fracture 
spacing gives values of the P30 parameter of 0.6 for 
fracture sets 1 and 3, 1.0 for set 2, 0.8 for set 4 and 2.6 
for set 5. The final fracture model for the ventilation 
drift is constructed on the basis of this set of param-
eters. The combined model is then sampled and the 
corresponding statistics are compared with those of 
the fracture mappings to validate the model. Note that 
the statistics of all fractures together are not used di-
rectly in the parameter optimisation process. The case 
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study demonstrates that the non-parametric approach 
described here is effective and simple and the target 
statistics are well captured by the model. 

The 3D fracture model derived in this work for the 
Stripa dataset is based on the assumption that 3D frac-
tures are equidimensional discs with the size distribution 
following an exponential distribution with only a single 
parameter l, and fractures of each set are uniformly dis-
tributed in three-dimensional space. Thus it cannot be 
claimed that the model described is the “best” for the 
Stripa Mine not least because all these assumptions can 
be challenged. For example, the exponential distribution 
for fracture size is used in this study because of its sim-
plicity, but it may not be suitable as no significant small 
size fracture traces were reported in the literature for the 
Stripa Mine. There is also some evidence that the frac-
tures of some fracture sets may not be equidimensional 
due to their significantly different signatures of fracture 
traces on different sampling planes. The Poisson distri-
bution is also used for simplicity but fracture distribu-
tions of some fracture sets are clearly not uniform and 
a non-homogeneous distribution model may be more 
appropriate. These challenges remain important issues 
to be addressed in future work.
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